Units and Dimensions

Need help with your homework? Look no further! Our subject experts are ready to effortlessly handle your assignments, so you can finally say goodbye to stress and hello to top grades.

Please enable JavaScript in your browser to complete this form.
Click or drag files to this area to upload. You can upload up to 3 files.
Get a response in under 15 min

There are 3 commonly used units utilized in various systems. These 3 units are:

M.K.S. system of units (Metre-Kilogram-Second)

As the initials suggest, this system expresses mass in kilogram, length in meter and time in seconds. With the help of this unit expression, we can see the expression of unit of force depicted as kgf and isexpressed as kilogram force.

C.G.S. system of units (Centimetre-Gram Second)

In this system too, according to the suggested initials, depiction of mass is in gram, length in centimeter and time in seconds. With the help of its unit expression, we can see its expression of unit force as dyne. As per its definition, dyne is the force that acts on one gram mass and produces an acceleration of 1cm / sec 2.

S.I. system of units (Systeme International)

Systeme International or S. I. unit is also referred as International System of units.The unit depiction of this system is done with mass and time. In this case too, time is depicted with seconds, and meter mass is represented with kilogram. Unit force of this system is illustrated with Newton and in equational term is showed with the help of N.

According to S.I system, any force acting on a certain mass of 1 kilogram, whose outcome is an acceleration of 1 m / s 2 is known as Newton.

In fact on proceeding further with the relation of S.I. system of units and C.G.S. system of units, it is found that,

1 N = mass x 1 m / s 2

      = 1 kg x 1 m / s 2

This on equating further will give us,

= 1000 gm. x 100 cm / s2

= 1000 x 100 x gm. x cm / s2

= 105 dyne

Therefore,

1 Newton = 105 dyne

Now, in such instances where magnitude of force is huge, utilization of unit of force is described in mega newton or kilo newton.

On converting Kilo newton to newton, its value comes to be,

1 kilo newton = 10 3 newton

Representation of kilo newton is kN.

After finding out the value of kilo newton, value of mega newton is,

1 mega newton = 10 5 newton

As it is stated above, that magnitude of forces of large quantities have depiction in greater value, all such quantities are represented in,

  • Tera
  • Kilo
  • Giga
  • Mega

In case of smaller quantities, they are represented as,

  • Pico
  • Nano
  • Micro
  • Milli

Representation and valuation of smaller quantities

  • Pico = p = 10 -12
  • Nano = n = 10 -9
  • Micro = µ = 10 -6
  • Milli = m = 10 -3
  • Depiction of the above values with Newton

Depiction of the above values with Newton

  • Pico = pN = 10 -12N
  • Nano = nN = 10 -9N
  • Micro = µN = 10 -6N
  • Milli = mN = 10 -3N

Representation and valuation of these huge quantities

  • Tera = T = 10 12
  • Kilo = K = 10 3
  • Giga = G = 10 9
  • Mega = M = 10 6

Depiction of the above values with Newton

  • Tera = TN = 10 12 N
  • Kilo = KN = 10 3 N
  • Giga = GN = 10 9 N
  • Mega = MN = 10 6 N

Relation between Newton (N) and kilogram force (kgf) is represented by,

1 kgf = 9.81 N

According to this formula, this value is similar to a body weight which is attracted towards the earth with a certain force. Formulation of it is done through,

m = mass of a body in kilogram

w = weight of that body

g = gravity

W= (m x g) N

If we assume mass to be 1 Kg, its weight will be,

W = 1 kg x 9.81 m /s2 = 9.81 N

Basic Units with their dimensions

Physical quantity                          Symbol or Dimension       Unit or Notation

Mass                            kg                                kilogram

Length                                             m                                     Metre

Electric Current   A                              Ampere

Time                                                  s                                                Second

Luminous Intensity                             cd                                             Candela

Temperature        K                                         Kelvin

Derived Units with their dimensions

Momentum of forceNm                                             Newton metre

Power                                                  W=J/s                                      Watt

Torque                                                 Nm                                          Newton metre

Frequency                                           Hz= s-1                                      Hertz

Angular velocity                                 rad/s                                        radian/second       Acceleration                                        m/s2                                         metre/second2

Force                                                   N =kg m/s2                              Newton

Pressure                                               Pa = N/m2                               Pascal

Angular acceleration                           rad/s2                                     radian / second2

Work, Energy                                      J = Nm =kg m2/s2                     Joule

Supplementary Units with their dimensions

Solid angle                                       sr                                                Steridian

Plane angle                                          rad                                          Radian

Few sub multiples and multiples of S. I units prefixes

Prefix                                 Symbol                 multiplying factor

Pico                                        p                     10-12 = 0.000,000,000,001

Nano                                       n                      10-9 = 0.000,000,001

Micro       µ                      10-6 = 0.000,001

Milli                                        m                     l0-3 = 0.001

Kilo                                        k                      103 = 1,000

Mega       M                     106 = 1,000,000

Giga                                      G                       109 = 1,000,000,000

Tera                                         T                       1012 = 1,000,000,000,000

Problems and solutions

Problem 1

There are 2 forces which are equal and are acting at same point. The angle between those 2 forces is60°. You are provided with its resultant force which is 20 x √3 N. Calculatemagnitude of each of those forces.

Solution

Provided resultant is,

R = 20 x √3

Angle between forces,

a = 60°

Let us assume that each of the magnitudes of the 2 forces is P.

So, with the help of these derivations,we can easily calculate the magnitude.

Its equation will be,

R = (2P cos a / 2)x (20 x √3)

    = 2P x cos (60° / 2)

    = 2P cos 30°

    = 2P x (√3 / 2)

    = P x √3

Therefore,

P = (20 x √3) / √3

= 20 N

Here, 20N is the magnitude of each force.

Problem 2

At a certain point, there are 2 forces that are acting on it with magnitudes 8 N and 10 N. Suppose, the given angle between the 2 forces is 60°, find the magnitude of resultant force.

Solution

We are aware of the values of the magnitudes of both forces. Let us name those forces as P and Q. Let us assume P to be 10 N and Q is 8 N. given angle is 60°.

R = √p2 + Q2 + 2PQ cos a

= √((10)2 +  (8)2 +  2  x  10  x 8  x cos⁡〖60°〗 )

= √(100 +  64 +  160  x 0.5)

= √(100 + 64 +  80)

= √(164 +  80)

= √244

= 15.62

Problem 3

According to the figure created with the help of law of triangle of forces, there are 2 forces which are acting on a certain fixed point (figure 1).There is another angular figure with certain values apart from the previous one (figure 2).Values of both forces in the second one are 100 N and 50 N respectively. Angle between those 2 forces is30°. And the other angle between one of the forces and plane line is 15°. Find out both of their direction and magnitudes.

Solution

Let us assume that fixed point to be O and the 2 forces to be ‘p’ and ‘q’.

Let value of p = 50 N and q = 100 N

As per figure 2, angle between p and q is depicted with value 30°.

Equation to find out magnitude of resultant R is,

R = √(P2 + Q2 + 2PQ cos a)

It is with the help of figure 2;we can see this resultant.

Angle value found between the direction and resultant of force p is performed with the help of this equation,

tan θ = q sin a / p + q sin a

θ = tan -1 (q sin a / p + q sin a)

   = tan -1 (100 x sin 30° / 50 x 100 cos 30°)

= tan -1 0.366

= 20.10°

Angular value with x axis made with resultant R is,

θ + 15° = 20.10° + 15°

= 35.10°

Problem 4

Angular value of 2 forces is 60°, and the resultant of those 2 forces is 14 N. these forces when acting on a 90° angled triangle will give resultant as  N. Calculate magnitude of both the forces.

Solution

To find out magnitude of both the forces, we need to divide the problem into 2 parts.

In the first part, (#1)

Angle  = 60°

Resultant of 1 of the forces = 14 N

i.e., R1 = 14 N

In case of second part, (#2)

Let us assume magnitude of both the forces be P and Q.

So using the equation to find out resultant force,

R = √(P2 + Q2 + 2 PQ cos α)

R1 = √(P2 + Q2 + 2 PQ cos 60)°

14 = √(P2 + Q2 + 2 PQ x 0.5)

14 2= P2 + Q2 + PQ

196 = P2 + Q2 + PQ (equation 1.1)

Now, utilizing similar equation in #2, we will get,

R = √(P2 + Q2)

In this case, R2 is √136 N

So,

√136  = √(P2 + Q2)

Therefore,

136 = P 2 + Q 2(equation 1.2)

Now, subtracting equation (1.2) from equation (1.1),

P2 + Q2 + PQ – (P2 + Q2) = 196 – 136

PQ =60 (equation 1.3)

In the next step, when we multiply this new equation (1.3) with 2, we get,

2 PQ = 120 equation (1.4)

Now, we will add equation (1.4) with equation (1.2). on doing so, we will get,

P2 + Q2 + 2PQ = 136 + 120

P2 + Q2 + 2PQ= 256

(P + Q)2 = (16)2

P + Q =16

P = (16- Q)

On substituting P’s value with equation (1.3), we will get,

60 = (16 – Q) x Q

= 16Q – Q2

     = Q2 – 16Q + 60

= 0

This entire equation is known as quadratic equation.

After getting all these equations, we will calculate the values of both the forces from these.

So, with the help of above equation,

= ((16 – 4))/2 and((16 + 4))/2

= 6 and 10

These are the values of Q

In case of P, we will substitute Q’s value in this equation,

P = (16 – 6) or (16 – 10)

So here the answers are 10 and 6.

We can clearly see that values of both equations for P and Q are same. So, values of 2 forces are 6 N and 10 N.

Problem 5

There are 2 concurrent forces whose combined value or resultant is 180 N and of forces (P + Q) are 270 N. Providedangle between resultant force R and one of the concurrent forces is 90°. Determine the following things,

  1. a) Magnitude of P and Q
  2. b) Angle between P and Q

Solution

Resultant or R, in this case, is 180 N.

(P + Q) = 270 N

Angle between P and R is 90°

Let us name that angle as θ. So θ = 90°

So now to find out magnitude of P and Q, we will use the equation with tan θ.

tan θ = Q sin α / P + Q cos α

Here we have assumed the angle between P and Q is α.

tan = 90° Q sin α / P + Q cos α

But we know that tan 90° is infinity. This instance can only happen when,

P + Q cos α = 0

Therefore,

P = – Q cos α

Although it is one of the methods, the above result can be found with the help of another method too.

Alternative method

Let us take the help of figure 2 in problem 3.

Suppose in that triangle ∠OAC, θ = 90°

So,

∠OAC = 180 – α

∠ACO = α- θ

= α – 90°

Now, we will be using sine rule and from that we get,

sin 90° / Q = sin (180 –α) / R = sin (α – 90) / P

Taking the help of initial term and last one, we get the equation,

sin 90° / Q = sin (α – 90) / P

It can also be written as,

1 / Q = – cos α/ P [sin (α – 90) = sin [-(90 –α)] (90 –α)] = – sin (90 –α) = – cos α]

Its resultant value will come as,

P = – Q cos α (equation 1)

Now, using the equation for resultant and squaring it, we will get,

R2 = P2 + Q2 + 2PQ cos α

= P2 + Q2 + 2P x (-P)

We will take the help of (equation 1) but with a little change. In this case, the equation will stand as,

Q cos α = – P

Now, utilizing this above equation,

R2 = P2 + Q2 -2P2

= P2 – Q2

= (P + Q) (P – Q)

Given value of R is 180 and (P + Q) is 270

On putting the values in their designated places,

1802 = 270(P – Q)

32400 = 270 (P – Q)

(P – Q) = 32400/270

We have at present, values of both (P + Q) and (P – Q). Now putting the values on the above equation we will get,

2Q = (P + Q) + (P – Q)

2Q = 270 + 120

2Q = 390

Q = 195

So, 195 N is the magnitude of Q.

For the magnitude of P,

P = (P + Q) – Q

= 270 – Q

= 270 – 195

= 75

As we have already assumed the angle between P and Q to be α, we will be substituting P and Q’s values in equation 1.

So,

P = – Q cos α

75 = – 195 cos α

cosα = -75 / 195

= -0.3846

α = cos -1 (- 0.3846)

= 112.618°

Problem 6

There are 2 concurrent forces having its resultant force as 1500 N. Angle between both the forces is 90°. Angle between one of the forces and the resultant is 36°. Determine the magnitude of both forces.

Solution

Let us assume the names of concurrent forces be P and Q.

Angle between P and Q is 90° and is represented as α = 90°

Angle between one force and resultant force is θ = 36°

We will use tan rule in this case,

tan θ = Q sin α/ P + Q cos 90°

tan 36° = Q sin 90° / P + Q cos90°

= Q x 1 / P + Q x 1

= Q /P

0.726 = Q / P

Q = 0.726 P (equation 1)

Using the equation for resultant and squaring it,

R2 = P2 + Q2 + 2PQ cos α

(1500)2 = P2 + (0.726 P)2 + 2P x (0.726) x cos 90°

(1500)2 = P2 + 0.527 P2 + 0

= 1.527 P2

Putting the value of P in equation 1,

Q = 0.726 P

Q = 0.726 x 1213.86

= 881.26 N

To find the magnitude of P, we will use sine rule and consider ∠OAC (figure 2 problem 3).

From this rule we will get,

sin 90° / R = sin 36°Q = sin 54° / P

Now,

sin 90° / R = sin 36°Q

Q = R sin 36° / sin 90°

Here, given value of R = 1500 N

Q = 1500 x 0.5877 / 1

= 881.67 N.

We also have,

sin 90° / R = sin 54° / P

Now,

P = R sin 54° / sin 90°

= 1500 x 0.809 / 1

= 1213.52 N

Problem 7

There are 2 chains of length 3 m and 4 m. both these chains are supporting a weight of 900 N. find the tension in individual chains.

Solution

Let C be the weight 900 N

Given lengths are,

AC = 4 m

BC = 3 m

As its formation depicts a triangular formation, so the length of the third side will be AB = 5 m

In ∠ABC,

AC2 + BC2 = (4)2 + (3)2

= 16 + 9 = 25

AB2 =52 = 25

AB2 =AC2 + BC2

From the formulation it is clear that it is a right angle triangle,

So, ∠ACB is 90°

sina = BC / AB

= 3/ 5

= 0.6

a = 36° 52’

(a + b) =90°

Now,

b = 90° – a

= 90° – (36° 52’)

= 53° 8’

We will be calculating tensions of both chains BC and AC.

We will assume tension of AC as Tn1 and BC as Tn2.

In case of ∠BDC, which is a right angled triangle, its working will be,

θ = 90° – P

= 90°- 53° 8′

= 36° 52′

In ∠ACE,

= 180° – P

= 180° – 53° 8′

= 126° 52′

In ∠BCE,

= 180°-θ

= 180°-36° 52′

= 143° 8′

In ∠ACE, angle is 90°

Next step will be application of Lami’s theorem. On its application on C, we will be getting,

(Tn1 / sin of∠BCE) = (Tn2 / sin of ∠ACE) = (90° / sin 90°)

Tn2 / sin 143° 8’ = Tn2 / sin 126° 52’ = 90° / 1

Tn2 = 90° x sin 126° 52’

= 720 N

Problem 8

From a plane surface, there are 2 hanging chains which together are bearing a weight of 1000 N. One chain is bigger in length than the other. The point of connect shows it to be a right angle with angle of 30° between on side and center imaginary line. The other angle is 60°. Calculate tension of both chains individually.

Solution

Points from where both chains hang from, are A and B.

∠ACB = 90°

So, ∠CBA = 60°

∠CAB = 30°

Suppose the point at the plane from which the weight is hanging is D.

Now,

∠BCE =180° – 30° = 150°

∠BCD = 90° – 60° = 30°

∠ACE = 180° – 60° = 120°

We will assume tension of chain 1 as Tn1 and tension of chain 2 as Tn2

On application of Lami’s theorem at the point of weight (C),

(Tn1 / sin 150°) = (Tn2 / sin 120°) = (1000 / sin 90°)

(Tn1 / sin 150°) = (Tn2 / sin 120°) = 1000 / 1

Tn2 = 1000 sin 150° = 1000 x 0.5 = 500 N

Tn2 = 1000 sin 120° = 1000 x 0.866

= 866 N

 

Links of Previous Main Topic:-

Links of Next Mechanical Engineering Topics:-

Homework Blues?

Get expert help with homework for all subjects.

  • NPlagiarism-free work
  • NHonest Pricing
  • NMoney-back guarantee

Latest Reviews

Solved Sample Works

Accounting Homework

Corporate Accounting Sample

Biology Homework

Genetics Assignment Sample

Essay Writing Help

Business Plan Sample

Homework Help FAQs

Our Answers to Your Questions

How do I submit my homework?
K
L

Getting homework help is very simple with us. Students can either send us the homework via email or they can upload it to our online form here. For a quicker response, You can also chat with us at WhatsApp and submit homework directly. You are sure to get a response from our side within 10 minutes.

How much will my homework cost?
K
L

The cost of paying someone to do your homework varies depending on the service and the type of assignment. We have listed our standard pricing plans for popularly used writing services. For other kind of assignments, You can get a free instant quote from us using our online form.

We also accept partial payment to start working on your assignment help. You can pay the remaining amount when your task gets completed. No pressure of up-front payment. No hidden order costs.

Can I receive help with my homework anytime?
K
L

Yes, you can receive help with your homework anytime with us. Our online homework help services are available 24/7, allowing you to receive assistance with your homework anytime, anywhere.

For urgent homework requests, reach out to us through our LiveChat or WhatsApp channels and one of our friendly support agents will assist you in finding the right expert for your online homework help request immediately. With our services, you can rely on 24/7 availability and meeting deadlines.

Are online homework websites budget-friendly for students like me?
K
L

Yes, Our Online Homework Help websites are an affordable solution for you as a student. Compared to traditional tutoring services, MyHomeworkHelp prices their homework help services honestly and within the budget of college students. This makes it easier for you to receive assistance with your homework without breaking the bank.

What is your plagiarism-free policy?
K
L

At myhomeworkhelp, we take plagiarism very seriously and ensure that all solutions provided by our tutors are original and authentic. Our tutors are trained to provide custom-made solutions, tailored specifically to meet the requirements of each student. We do not provide pre-written papers. All our homeswork solutions are made from scratch, guaranteeing 100% orignal homework answers.

Additionally, we have strict plagiarism-detection tools in place to check all submissions for authenticity.

Is using an Online Homework Help Service cheating?
K
L

Using online homework help services is not equivalent to cheating. Our services are intended to support students with their homework and provide them with the resources they need to succeed academically. With the help of our online homework help services, students can receive immediate assistance with their homework from any location, at any time.

At myhomeworkhelp, we are committed to promoting academic integrity. Our tutors provide solutions that serve as guides for drafting your own work. It is not acceptable to submit someone else's work as your own, as this constitutes academic plagiarism.

Can I chat with my tutor?
K
L

Using our secure chat board, you can now chat directly with your assigned tutor. The chats are encrypted both ways to secure your privacy. This makes your contact with the tutor directly & confidentially, so you can better explain any requirements or changes if needed or just need updates.

You can't contact the experts outside of chat board platform. Sharing any personal information, including but not limited to contact information, goes against our Terms and Conditions and therefore may result in permanently blocking you from the platform. We take any personal data very seriously and we do it for the safety of our users.

Know more about chat board here.

What is your money-back guarantee policy?
K
L

It’s worth noting that our online homework help service rarely leads to disappointment among students. Our expert tutors, along with our support and quality assurance team, are dedicated to providing the best possible experience for our customers. However, if for any reason a student is unsatisfied with their homework help solution, we offer unlimited revisions until they are fully satisfied.

In the rare event that a student remains unsatisfied even after revisions, we offer a money-back guarantee. We want all of our students to feel confident and secure when they turn to us for assistance with their homework, and this guarantee is just one way that we demonstrate our commitment to providing the best possible service. If you have any concerns about our services or the quality of the work you receive, please contact us for support.

What is the expertise of the tutor assigned to do my homework?
K
L

At myhomeworkhelp, we take pride in our team of qualified and experienced tutors. All of our tutors undergo a rigorous selection process and are required to have a minimum of a master's degree in their respective fields. Additionally, they must pass a series of tests to demonstrate their proficiency and ability to deliver quality work. We believe in transparency and providing our clients with the best possible service. You can be confident in the expertise of the tutor assigned to do your homework.

What about privacy & confidentiality?
K
L

Using My Homework Help is absolutely safe. We care about your security, therefore we encrypt all personal data to make every user feel safe while using our services and we don’t share any personal information with any third parties without your permission. Your credit card information is not stored anywhere at My Homework Help, and use of PayPal relies on their secure payment networks. Your identity, payment and homework are in safe hands. You can always be certain of getting professional help and remaining anonymous, while using My Homework Help.